Case Report
 
Wilckodontics Combined with A-PRF and i-PRF: An Interdisciplinary Approach
 
Daliah Ruth, Janani Karthick, Jaideep Mahendra, Vijayalakshmi Rajaram
Department of Periodontology, Meenakshi Ammal Dental College & Hospital, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, Tamil Nadu, India.


Corresponding Author
:
Dr. Jaideep Mahendra
Email: jaideep_m_23@yahoo.co.in


Abstract

Background: Alveolar osteogenic orthodontics or periodontally accelerated osteogenic orthodontics (PAOO) is an emerging technology in the field of dentistry. It is relatively new treatment in the dental realm that combines selective alveolar corticotomy, particulate bone grafting and the application of orthodontic forces. Case Report: It is an interdisciplinary treatment approach utilizing tissue engineering principles with periodontal regenerative surgery to create rapid orthodontic tooth movement and reduce side effects like root resorption, relapse, inadequate basal bone and bacterial time-load factors. Conclusion: This case report aims at comparing the periodontally accelerated osteogenic orthodontic approach with advanced-platelet rich fibrin (A-PRF) on one side and injectable-platelet rich fibrin (i-PRF) on the other side by a split-mouth design. 

Introduction

Wilckodontics is an interdisciplinary  approach,  which is  also known as periodontally accelerated  osteogenic  orthodontics  (PAOO)  or  alveolar osteogenic  orthodontics, in  which  orthodontic  movement  is  enhanced  by alveolar corticotomy to  increase  the  rate  of  tooth  movement. The  alveolar bone is a  mineralized structure that easily remodels than cementum, thereby allowing orthodontic  tooth  movement 2-3  times  faster in  1/3rd to  1/4th the  time  required.  However, this procedure basically focuses on bone healing pattern known as the regional acceleratory phenomenon (RAP) [1]. Thus it satisfies the protocol of periodontal tissue engineering and regenerative surgery and reduces side effects like root resorption, relapses, inadequate basal bone and infection. Tissue engineering  and  regeneration  is  a  method  to  promote  a  material-induced  tissue  reaction  that  has an effective wound-healing  process  which  is obtained  by  certain  biomaterial  that  is  generated  from  autologous  blood.  Platelet-rich  plasma  (PRP) [2] was  the first  generation  platelet  concentrate derived  from  human  blood  samples  with  common  denominators  such  as  the addition  of  anticoagulants and  bovine  serum  which  was  achieved by double-centrifugation. However, bovine  thrombin  and various  other anticoagulants limit the clinical application  of  PRP by suppressing  the  tissue  regeneration  and produce  health hazards. For  these  reasons,  platelet  rich  fibrin  (PRF), a second generation platelet concentrate was  developed as the first source  of  autogenous  blood-derived growth  factors harvested  without  the  use  of  anti-coagulants  by  Choukran [3]. PRF serves  as a  scaffold  for  tissue  regeneration  by  bearing  the  feature  of  acting  as  a barrier  membrane  in  guided  bone  and  tissue  regeneration  (GBR,  GTR) procedures  while  simultaneously  holding  a  number  of  growth  factors responsible for wound healing [4]. To optimize the amount of growth factors in PRF, the third generation concentrates A-PRF evolved by decreasing the rotational speed (rpm), and increasing the centrifugation time [5] which allows the amplification of neutrophilic granulocytes, also increase the transformation of monocytes into macrophages, hence amplifying the bone stimulation effect [6]. The use of platelet concentrate in liquid (injectable) or polymerized (clot) forms can be either utilized alone or combined easily with various biomaterials that facilitate increased fibroblast production and aims at rapid wound healing [7]. In  the present  case,  the  third  generation  platelet  concentrates  A-PRF  and  i-PRF were used  and the  accelerated tooth  movement was compared at the osteotomy site reinforced with A-PRF on one side and i-PRF on other side.

Case Report

A 20-years old male patient reported to the Department of Orthodontics with the chief complaint of forwardly placed teeth. Initial orthodontic intra-oral examination revealed Angle’s Class II malocclusion. The patient was systemically healthy with no deleterious habits. Presurgical orthodontic treatment was initiated. The first maxillary premolars were extracted to create a space for the alignment of the proclined anterior teeth. Strap-up was carried out using pre-adjusted edgewise appliance system (MBT 0.022"). Initial alignment and leveling was started with preformed 0.016” NiTiarchwires (3M unitek) followed by 0.016”×0.022” NiTiarchwires and sequentially 0.017”×0.025” NiTiarchwires (3M Unitek) and finally shifted to 0.017”×0.025” stainless steel. This phase of treatment was continued till all the teeth were aligned. The time taken for the presurgical orthodontic phase was 3 months. The post-operative review after 3 months revealed the complete closure of the anterior region, however retraction space was still persisting. Hence, the patient was referred to the Department of periodontics for retraction space closure by corticotomy and hence became an indication for PAOO procedure [Fig. 1]. The treatment  was  planned  to  undergo  PAOO combined with A-PRF  on  one  side  and  PAOO with i-PRF on other side to provoke faster tooth movement and rapid wound healing by growth factors. Treatment protocol was explained and informed consent was obtained from the patient.



Before the surgery routine protocol of oral prophylaxis was done and oral hygiene instructions were given. For A-PRF  preparation  10 ml  of  blood  was  centrifuged  at  1500 rpm  for 14 mins. After careful removal of the red blood cell fraction with scissors, the A-PRF clot was procured. For i-PRF preparation two tubes of 10 ml of whole blood without anticoagulant was centrifuged at 700 rpm for 3 mins at room temperature by Duo Centrifuge (Process for PRF, Nice, France). The upper liquid layer was collected as i-PRF.
Perioral and intraoral region was disinfected with betadine solution. After administering local anaesthesia [Fig.2] a  full  thickness  mucoperiosteal  flap was  elevated in  relation  to 23  to  25 region [Fig.3], which  was extended 2-3 mm  beyond the mucogingival junction. Vertical grooves were placed in the interradicular space between the root prominences with the help of bone cutting burs and adequate saline irrigation.  The  vertical  cuts  extended  2-3 mm  from  the  alveolar  crest  to  approximately  2 mm beyond  the  apices  of  the roots. Perforations  were  made  in  the  alveolar  bone  over  the  radicular  surfaces with round bur [Fig.4]. The procured A-PRF gel was mixed with osseograft (xenograft) [Fig.5] and placed in the surgical  site [Fig.6].  The flap was adapted without tension to the original position and sutured with 4-0 silk sutures [Fig.7]. The sutures were left in place for ten days [Fig.8].







After one week, a similar technique was done in relation to 13 to 15 region. In this region, the procured i-PRF was mixed with osseograft (xenograft) [Fig.9] and placed at the surgical site and the flap sutured. Post-operative instructions were given during each session of surgery followed by prescription of antibiotics and analgesics. Sutures were removed after ten days.  Orthodontic treatment was started 2 weeks after surgery, 250 grams of force was applied on both sides and appliance was activated every 2 weeks. At the end of three months the space was completely closed [Fig.10]



Discussion

PAOO is considered important in the management of malocclusion to reduce the orthodontic treatment time by accelerating the space closure [8,9]. Corticotomy facilitated tooth movement was first described by Henrichkole, in which he explains the importance of preserving the intact spongiosa by this technique  [10], while a total alveolar osteotomy may impair the intraosseous and intrapulpal blood circulation. After  a  healing  period  of  1 or  2  weeks  orthodontic  tooth  movement  is started.  Demineralization  occurs  in  the  alveolar  bone  after  corticotomy,  and  the remaining  collagenous  matrix  of  bone  is  transported  with  the  tooth  during  its movement which will be remineralized following orthodontic  movement [11]. Lee et al. and Sebaoun et al. reported systematic and histological evidence supporting the  rapid tooth  movement  after  alveolar  corticotomy and explained that it was due  to increase  in anabolic and catabolic processes upto 21 days [12]. The  fact  that  the  teeth  can  be  moved  more  rapidly,  thus  resulting  in  shortened treatment  times,  is  certainly  advantageous  to  the  patient’s  periodontal  health because  less  time  in  fixed  appliances  reduces  patient “burnout”  and substantially reduces  the  time  available  for  relatively  benign commensal bacterial  biofilms  to  assume  qualitative  changes  and  convert  to  a destructive cytotoxic potential often seen when fixed appliances have remained on the teeth for  more  than  2  to  3  years.
The increased  bone  volume  can  provide  more  intact  periodontium,  a  decreased  need  for  extraction,  a  degree  of  facial reshaping,  and  an  increase  in  the  bony  support  for  both  the  teeth  and  the overlying soft tissues [12,13]. The  ability  to  increase  the  post-treatment  bone  volume  and  cover  vital  root surfaces  can  result  in  the  repair  of  pre-existing  alveolar  dehiscences over  root prominences  and  lessen  the  chance  of  new  dehiscence  formation,  which  can be a contributing factor to gingival recession.
PRF is a proposed  method  for  the  use  of  platelet concentrate in  which  autologous  growth  factors  derived  from patients  own  blood  further  accelerate tissue  regeneration.  Major development  and  advancement  were  made  with  a  liquid  formulation  of PRF which  does  not contain anticoagulant. Third generation super PRFs show superiority in effective and faster wound healing [14]. Ghanaati et al.  introduced the low-speed concept  for  blood  centrifugation  whereby lower  centrifugation speeds  were  shown  to contain  numerous  cells, especially leukocyte [15].  Higher centrifugation  force  shift  the  cell  population  from  the  top  to  the  bottom, thus  by reducing  centrifugation  G-force, there is an increase in  leukocyte  number and they remain in the top layer. Decreasing the rpm while increasing the centrifugation time in the A-PRF group would have given an enhanced presence of neutrophilic granulocytes in the distal part of the clot.  The granulocytes have tissue regeneration properties as well. They participate  in  the  process  of  wound  debridement  by  secreting  several  proteases, including  matrix metalloproteinase 9 (MMP9), an extracellular matrix-digesting enzyme.
Furthermore,  neutrophilic granulocytes expressing MMP9  play  a  part in  the  process  of revascularization of  the  tissue  defect  by  being  recruited,  eg. VEGF-A. Thus the distribution of neutrophilic granulocytes within the A-PRF clot  might  be  the  basis  for  a  better  functionality  of  the  transplanted monocytes/macrophages  and  lymphocytes  and  their  deployment  to  support tissue  regeneration. i-PRF  influence  osteoblast  behavior by inducing  the migration, proliferation,  and  differentiation  of  human  osteoblasts.  One  of  the main  benefits  of  i-PRF  is the additional  incorporation  of  leukocytes  as  well  as  fibrin proteins. i-PRF was capable of inducing higher cell  migration and mRNA expression  of  TGF-ß,  PDGF,  and  COL1a.  It  was  found  that  a  270%  increase in  fibroblast  proliferation  within  3 days  and  resulted  in  additional  release of growth factors for rapid healing.

Conclusion

This case  report  presents  with results  of interdisciplinary amalgamation of  PAOO  techni-que  with  incorporation  of  A-PRF  and  i-PRF  not only to address the rapid tooth movement but also to achieve rapid healing with adequate  gingival  architecture. Long-term  studies  are needed  to  evaluate  the advantages  and  disadvantages  of  this  technique  as  well  as  incorporation  of minimally invasive additions and modifications to this technique.

Contributors: DR: manuscript writing, literature review and patient management; JK: critical inputs into the manuscript and patient management; JM, VR: literature review, discussion and imaging.  JM will act as a study guarantor. All authors approved the final version of this manuscript and are responsible for all aspects of the study.
Funding: None; Competing interests: None stated.

References
  1. Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J. 1983;31:3-9.
  2. Roubelakis MG, Trohatou O, Roubelakis A, Mili E, Kalaitzopoulous I, Papazolou G, et al. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev. 2014;10:417-428.
  3. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:37-44.
  4. Huang F, Yang S, Zhao J, Chang Y. Platelet-rich fibrin increases proliferation and differentiation of human dental pulp cells. J Endod. 2010;36:1628-1632.
  5. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, et al. Advanced platelet-rich fibrin: A new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40:679-689.
  6. Sinder BP, Pettit AR, McCauley LK. Macrophages: Their emerging roles in bone. J Bone Miner Res. 2015;30:2140-2149.
  7. Jain V, Triveni MG, Kumar AB, Mehta DS. Role of platelet-rich- fibrin in enhancing palatal wound healing after free graft. Contemp Clin Dent. 2012;3:S240-S243.
  8. M.S.  Robles-Andrade C.  Guerrero-Sierra C.  Hernández-Hernández. Ortodonciaacelerada periodontal mente:  fundamentosbiológicosytécnicasquirúrgicas. Rev Mex Periodontol. 2011;2:12-16.
  9. Hassan AH, Al-Fraidi AA, Al-Saeed SH. Corticotomy-assisted orthodontic treatment: review. Open Dent J. 2010;4:159-164.
  10. Kole H.  Surgical operations of the alveolar ridge to correct occlusal abnormlities. Oral Surg Oral Med Oral Pathol. 1989;12:515-520.
  11. Schilling T, Müller M, Minne HW, Ziegler R. Influence of inflammation-mediated osteopenia on the regional acceleratory phenomenon and the systemic acceleratory phenomenon during healing of a bone defect in the rat. Calcif Tissue Int. 1998;63:160-166.
  12. Sebaoun  JD,  Kantarci  A,  Turner  JW,  Carvalho  RS,  Van  Dyke  TE, Ferguson  DJ.  Modeling of trabecular bone and lamina dura  following selective alveolar decortication in rats. J Periodontol. 2008;79:1679-1688.
  13. Wang L, Lee W, Lei DL, Liu YP, Yamashita DD, Yen SL. Tisssue responses in corticotomy and osteotomy-assisted tooth movements in rats: Histology and immunostaining. Am J Orthod Dentofacial Orthop. 2009;136:770-776.
  14. Priyanka N. Potdar, et al. SUPER PRFs- from L to i .Int J Res Dent. 2016;6:1-12.
  15. Ghanaati S, Booms P,  Orlowska  A,  Kubesch  A, Lorenz  J,  et al. Advanced platelet-rich  fibrin: a  new  concept  for  cell-base  tissue  engineering  by means  of  inflammatory  cells. J Oral Implantol. 2014;40:679-689.